Reg. No: Image: Side of the set	Ç	.P. Code: 19MI	E0304											R1	9	
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech II Year I Semester Supplementary Examinations December-2021 KINEMATICS OF MACHINERY KINEMATICS OF MACHINERY KINEMATICS OF MACHINERY (Mechanical Engineering) Time: 3 hours Max. Marks: 60 (Mechanical Engineering) Time: 3 hours Max. Marks: 60 (Mechanical Engineering) Time: 3 hours Max. Marks: 60 COR 2 A Explain the inversions of double slider crank chain with neat sketch and list out the practical applications of inversions. L2 6M DR 2 a Explain the working of Docillating cylinder engine with neat sketch. L2 6M DIFTING 3 With neat sketch, explain the Davis steering mechanism. L4 6M DIFTING 3 With neat sketch, explain the Davis steering mechanism. L4 6M b Max are the disadvantages of	F	Reg. No:	2.97 3 05	b seco	121.11	ank	10110	2.453	Line of the second s	160.18]				
Image: Autonomous and the set of th		SIDDHAI	RTH IN	STITU	ΤΕΟ	F EN	GINE	ERIN	`G & '	ГЕСН	INOI	┘ LOGY::	PUT	TUR		
B.Tech II Year I Semester Supplementary Examinations December-2021 KINEMATICS OF MACHINERY (Mechanical Engineering) Time: 3 hours Max. Marks: 60 (Answer all Five Units 5 x 12 = 60 Marks) UNIT- 1 Explain the inversions of double slider crank chain with neat sketch and list out the L3 12M practical applications of inversions. OR 2 a Explain the working of beam engine with neat sketch and list out the L2 6M b Explicate the working of Deam engine with neat sketch L2 6M b Explicate the working of Oscillating cylinder engine with neat sketch. L2 6M VINT-II 3 With neat sketch, explain the Davis steering gear of an automobile. L2 12M OR 4 a Differentiate between the Davis and Ackerman's steering mechanism. L4 6M b What are the disadvantages of Davis steering gear mechanism. L1 6M UNTT-III 5 In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40 L3 12M mm long and rotates at 120 r.p.m. clockwise, while the link CD = 80 mm oscillates about D. BC and AD are of equal length. Find the angular velocity of link CD when angle BAD = 60° OR 6 a Discuss the three types of instantaneous centres for a mechanism L0 6M b Write the relation between the number of instantaneous centres and the number of links in a mechanism. UNIT-IV 7 A cam is to give the following motion to a knife-edged follower : L2 12M OR 12 12M NUTION 7 A cam is to give the following motion to a knife-edged follower : L2 12M OR 2 12M OR 2 12M OR 3 2 12M OR 4 2 Divel for the next 30° of cam rotation; 2. Dwell for the next 30° of cam rotation; 3. Return stroke during next 60° of cam shaft, and (ii) the axis of the follower is offset by 20 mm f on the axis of the cam shaft, and (ii) the axis of the follower is offset by 20 mm f on the axis of the cam shaft.	(AUTONOMOUS)															
KINEMATICS OF MACHINERY (Mechanical Engineering) Time: 3 hours Max. Marks: 60 (Answer all Five Units 5 x 12 = 60 Marks) UNIT-1 1 Explain the inversions of double slider crank chain with neat sketch and list out the practical applications of inversions. L3 12M 2 a Explain the working of beam engine with neat sketch L2 6M b Explicate the working of Oscillating cylinder engine with neat sketch. L2 6M b Explicate the working of Oscillating cylinder engine with neat sketch. L2 6M b Explicate the working of Oscillating cylinder engine with neat sketch. L2 6M 0 With neat sketch, explain the Davis steering gear of an automobile. L2 12M 3 With neat sketch, explain the Davis steering gear mechanism. L4 6M b What are the disadvantages of Davis steering gear mechanism. L4 6M b What are the disadvantages of locuk size, while the link CD = 80 mm oscillates about D. BC and AD are of equal length. Find the angular velocity of link CD when angle BAD = 60° L6 6M c NIT-IV 7 A cam is to give the following motion to a knife-edged follower : 1. Outstroke during 60° of cam rotation; 2. Dwell for the next 30° of cam rotation; 3. Return stroke dur	B.Tech II Year I Semester Supplementary Examinations December-2021															
Time: 3 hours Max. Marks: 60 (Answer all Five Units 5 x 12 = 60 Marks) UNIT-1 1 Explain the inversions of double slider crank chain with neat sketch and list out the practical applications of inversions. L3 12M 2 a Explain the working of beam engine with neat sketch L2 6M b Explicate the working of Oscillating cylinder engine with neat sketch. L2 6M 0R 0R 12 12M 3 With neat sketch, explain the Davis steering gear of an automobile. L2 12 12M 0R 0R 12 12M 4 a Differentiate between the Davis and Ackerman's steering mechanism. L4 6M b What are the disadvantages of Davis steering gear mechanism. L4 6M b What are the disadvantages of Davis steering gear mechanism. L4 6M b What are the disadvantages of Davis steering gear mechanism. L4 6M b What are the disadvantages of paus steering gear mechanism. L4 6M b What are the disadvantages of paus steering gear mechanism. L1 6M c In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40 L3 12M mm long and rota				N		ALL Aechar	cs OI	F IVIA Engine	ering	EKY						
(Answer all Five Units 5 x 12 = 60 Marks) UNIT-1 1 Explain the inversions of double slider crank chain with neat sketch and list out the practical applications of inversions. L3 12M 2 a Explain the working of beam engine with neat sketch L2 6M b Explicate the working of Oscillating cylinder engine with neat sketch. L2 6M 0 UNIT-1 12 12M 3 With neat sketch, explain the Davis steering gear of an automobile. L2 12M 0 OR 12 12M 4 a Differentiate between the Davis and Ackerman's steering mechanism. L4 6M b What are the disadvantages of Davis steering gear mechanism. L4 6M ventre UNIT-1U 5M 6M 12 6M 5 In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40 the Max at 120 r.p.m. clockwise, while the link CD = 80 mm oscillates about D. BC and AD are of equal length. Find the angular velocity of link CD when angle BAD = 60° 6M 6M 6 a Discuss the three types of instantaneous centres for a mechanism L6 6M b Write the relation between the number of instantaneous centres and the number of links in a mechanism. L1 6M	Т	ime: 3 hours			(1)	reena	inour 1		ering,				Ma	x. Mai	:ks: 60	
UNIT-1 Image: Second Secon				(Ans	wer a	ll Five	Units	5 x 1	2 = 6	0 Mar	ks)					
1 Explain the inversions of double slider crank chain with neat sketch and list out the practical applications of inversions. I2 12M 2 a Explain the working of beam engine with neat sketch L2 6M b Explicate the working of Oscillating cylinder engine with neat sketch. L2 6M 0 INIT-II INIT-II 6M 3 With neat sketch, explain the Davis steering gear of an automobile. L2 12M 0 OR III 6M b What are the disadvantages of Davis steering gear mechanism. L4 6M b What are the disadvantages of Davis steering gear mechanism. L4 6M b What are the disadvantages of Davis steering gear mechanism. L4 6M b What are the disadvantages of Davis steering gear mechanism. L4 6M b What are the disadvantages of Cause steering gear mechanism. L3 12M f In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40 mm long and rotates at 120 r.p.m. clockwise, while the link CD = 80 mm oscillates about D. BC and AD are of equal length. Find the angular velocity of link CD when angle BAD = 60° OR L6 6M b Write the relation between the number				s-strin.			UNI	T-I			s. esti					
OR L2 6M 2 a Explain the working of beam engine with neat sketch L2 6M b Explicate the working of Oscillating cylinder engine with neat sketch. L2 6M 1 IVIIT-II 12 6M 3 With neat sketch, explain the Davis steering gear of an automobile. L2 12M 0R 0R 12 6M 4 a Differentiate between the Davis and Ackerman's steering mechanism. L4 6M b What are the disadvantages of Davis steering gear mechanism. L4 6M 1 mm long and rotates at 120 r.p.m. clockwise, while the link CD = 80 mm oscillates about D. BC and AD are of equal length. Find the angular velocity of link CD when angle BAD = 60° NR L6 6M b Write the relation between the number of instantaneous centres and the number of links in a mechanism. L6 6M c TINT-IV A cam is to give the following motion to a knife-edged follower : L2 12M 1. Outstroke during 60° of cam rotation ; 2. Dwell for the next 30° of cam rotation ; 2. Dwell for the next 30° of cam rotation ; 2. Dwell for the next 30° of cam rotation ; 2. Dwell for the next 30° of cam rotation ; 2. Dwell for the next 30° of cam rotation ; 2. Dwell for the next 30° of cam rotation ;	1	Explain the inv practical applic	versions of cations of	of doub f invers	le slid ions.	er crai	nk cha	in wit	h neat	sketc	h and	list out	the	L3	12M	
 2 a Explain the working of beam engine with neat sketch b Explicate the working of Oscillating cylinder engine with neat sketch. c Explicate the working of Oscillating cylinder engine with neat sketch. c Explicate the working of Oscillating cylinder engine with neat sketch. c Explicate the working of Oscillating cylinder engine with neat sketch. c Explicate the working of Oscillating cylinder engine with neat sketch. c Explicate the working of Oscillating cylinder engine with neat sketch. c Explicate the working of Oscillating cylinder engine with neat sketch. c Explicate the working of Oscillating cylinder engine with neat sketch. c Explicate the working of Oscillating cylinder engine with neat sketch. c Explicate the working of Oscillating cylinder engine with neat sketch. c Explicate the working of Oscillating cylinder engine with neat sketch. c Explicate the working of Oscillating cylinder engine with neat sketch. c Explicate the working of Oscillating cylinder engine with neat sketch. c Explicate the working of Oscillating cylinder engine with neat sketch. c Explicate the working of Oscillating cylinder engine with neat sketch. c Explicate the disadvantages of Davis steering gear of an automobile. c Explicate the disadvantages of Davis steering gear of an automobile. c Explicate the disadvantages of Davis steering gear mechanism c Explicate the angular velocity of link CD c Explicate the angle EAD = 60° c Explicate the engine of equal length. Find the angular velocity of link CD when angle BAD = 60° c Explicate the relation between the number of instantaneous centres and the number of links in a mechanism. c Explicate the engine of instantaneous centres for a mechanism c Explicate the engine of the follower is 40 mm and the minimum radius of the cam is to give the follower mov							OF	R								
b Explicate the working of Oscillating cylinder engine with neat sketch. L2 6M UNIT-II IUNIT-II 6M 3 With neat sketch, explain the Davis steering gear of an automobile. L2 12M 0R 0R 12 12M 4 a Differentiate between the Davis and Ackerman's steering mechanism. L4 6M b What are the disadvantages of Davis steering gear mechanism. L4 6M In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40 L3 12M mm long and rotates at 120 r.p.m. clockwise, while the link CD = 80 mm oscillates about D. BC and AD are of equal length. Find the angular velocity of link CD when angle BAD = 60° OR 6 6 a Discuss the three types of instantaneous centres for a mechanism of links in a mechanism. L6 6M b Write the relation between the number of instantaneous centres and the number of links in a mechanism. L1 6M 7 A cam is to give the following motion to a knife-edged follower : L2 12M 1. Outstroke during 60° of cam rotation ; 2 2 12M 2. Dwell for the next 30° of cam rotation and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 m	2	a Explain the	working	of bear	n engi	ne wit	th neat	t sketc	h					L2	6M	
 3 With neat sketch, explain the Davis steering gear of an automobile. OR a Differentiate between the Davis and Ackerman's steering mechanism. b What are the disadvantages of Davis steering gear mechanism L1 6M UNIT-III 5 In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40 L3 12M mm long and rotates at 120 r.p.m. clockwise, while the link CD = 80 mm oscillates about D. BC and AD are of equal length. Find the angular velocity of link CD when angle BAD = 60° OR 6 a Discuss the three types of instantaneous centres for a mechanism L6 6M L1 6M of links in a mechanism. UNIT-IV 7 A cam is to give the following motion to a knife-edged follower : Oustroke during 60° of cam rotation ; Dwell for the next 30° of cam rotation ; Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when (i) the axis of the follower is offset by 20 mm f om the axis of the cam shaft. 		b Explicate the working of Oscillating cylinder engine with neat sketch. UNIT-II									L2	6M				
OR L4 6M b What are the disadvantages of Davis steering gear mechanism. L1 6M b What are the disadvantages of Davis steering gear mechanism L1 6M UNIT-III UNIT-III 6M 5 In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40 mm long and rotates at 120 r.p.m. clockwise, while the link CD = 80 mm oscillates about D. BC and AD are of equal length. Find the angular velocity of link CD when angle BAD = 60° L6 6M 6 a Discuss the three types of instantaneous centres for a mechanism b Write the relation between the number of instantaneous centres and the number of links in a mechanism. L6 6M 1 UNIT-IV 7 A cam is to give the following motion to a knife-edged follower : 1. Outstroke during 60° of cam rotation ; 2. Dwell for the next 30° of cam rotation ; 3. Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when (i) the axis of the follower is of the cam shaft, and (ii) the axis of the follower is of the follower is of the cam shaft I	3	With neat sketc	ch, expla	in the D	avis s	teerin	g gear	of an	auton	nobile	•			L2	12M	
 4 a Differentiate between the Davis and Ackerman's steering mechanism. b What are the disadvantages of Davis steering gear mechanism b What are the disadvantages of Davis steering gear mechanism c 11 6M c 11 6M c 12M 5 In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40 L3 12M mm long and rotates at 120 r.p.m. clockwise, while the link CD = 80 mm oscillates about D. BC and AD are of equal length. Find the angular velocity of link CD when angle BAD = 60° 6 a Discuss the three types of instantaneous centres for a mechanism L6 6M b Write the relation between the number of instantaneous centres and the number of links in a mechanism. c 12 12M 7 A cam is to give the following motion to a knife-edged follower : 1. Outstroke during 60° of cam rotation ; 2. Dwell for the next 30° of cam rotation ; 3. Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when (i) the axis of the follower is offset by 20 mm f om the axis of the cam shaft. 				1. D		1	OF	2								
 b what are the disadvantages of Davis steering gear mechanism [L1] 6M [UNIT-II] 5 In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40 L3 12M mm long and rotates at 120 r.p.m. clockwise, while the link CD = 80 mm oscillates about D. BC and AD are of equal length. Find the angular velocity of link CD when angle BAD = 60° OR 6 a Discuss the three types of instantaneous centres for a mechanism L6 6M b Write the relation between the number of instantaneous centres and the number of links in a mechanism. UNIT-IV 7 A cam is to give the following motion to a knife-edged follower : L2 12M 1. Outstroke during 60° of cam rotation ; 2. Dwell for the next 30° of cam rotation ; 3. Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when (i) the axis of the follower is offset by 20 mm f om the axis of the cam shaft, and (ii) the axis of the follower is offset by 20 mm f om the axis of the cam shaft 	4	a Differentiate	e between	n the Da	avis ai	nd Acl	kerma	n's ste	ering	mech	anısm	•		L4	6M	
 5 In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40 L3 12M mm long and rotates at 120 r.p.m. clockwise, while the link CD = 80 mm oscillates about D. BC and AD are of equal length. Find the angular velocity of link CD when angle BAD = 60° OR 6 a Discuss the three types of instantaneous centres for a mechanism b Write the relation between the number of instantaneous centres and the number of links in a mechanism. UNIT-IV 7 A cam is to give the following motion to a knife-edged follower : Outstroke during 60° of cam rotation ; Dwell for the next 30° of cam rotation ; Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when (i) the axis of the follower is of the cam shaft, and (ii) the axis of the follower is of the cam shaft 		b what are the	e disadva	intages	of Da	vis ste	ering g	gear n	nechar	nism				LI	6 M	
 mm long and rotates at 120 r.p.m. clockwise, while the link CD = 80 mm oscillates about D. BC and AD are of equal length. Find the angular velocity of link CD when angle BAD = 60° OR a Discuss the three types of instantaneous centres for a mechanism b Write the relation between the number of instantaneous centres and the number of links in a mechanism. UNIT-IV 7 A cam is to give the following motion to a knife-edged follower : 1. Outstroke during 60° of cam rotation ; 2. Dwell for the next 30° of cam rotation ; 3. Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when (i) the axis of the follower is offset by 20 mm f om the axis of the cam shaft, and (ii) the axis of the follower is offset by 20 mm f om the axis of the cam shaft 	5	In a four bar ch	hain AB	CD, AI) is fi	xed ar	nd is 1	50 m	n lon	g. The	e cran	k AB is	40	L3	12M	
 about D. BC and AD are of equal length. Find the angular velocity of link CD when angle BAD = 60° OR 6 a Discuss the three types of instantaneous centres for a mechanism b Write the relation between the number of instantaneous centres and the number of links in a mechanism. UNIT-IV 7 A cam is to give the following motion to a knife-edged follower : 1. Outstroke during 60° of cam rotation ; 2. Dwell for the next 30° of cam rotation ; 3. Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when (i) the axis of the follower is offset by 20 mm f om the axis of the cam shaft, and (ii) the axis of the follower is offset by 20 mm f om the axis of the cam shaft 		mm long and ro	otates at	120 r.p.	m. clo	ockwis	se, wh	ile the	link (CD =	80 mr	n oscilla	ates			
 OR a Discuss the three types of instantaneous centres for a mechanism b Write the relation between the number of instantaneous centres and the number of links in a mechanism. UNIT-IV 7 A cam is to give the following motion to a knife-edged follower : 1. Outstroke during 60° of cam rotation ; 2. Dwell for the next 30° of cam rotation ; 3. Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when (i) the axis of the follower is offset by 20 mm f om the axis of the cam shaft, and (ii) the axis of the follower is offset by 20 mm f om the axis of the cam shaft 		about D. BC and AD are of equal length. Find the angular velocity of link CD when angle $BAD = 60^{\circ}$								CD						
 6 a Discuss the three types of instantaneous centres for a mechanism b Write the relation between the number of instantaneous centres and the number of links in a mechanism. UNIT-IV 7 A cam is to give the following motion to a knife-edged follower : 1. Outstroke during 60° of cam rotation ; 2. Dwell for the next 30° of cam rotation ; 3. Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when (i) the axis of the follower is offset by 20 mm f om the axis of the cam shaft 							OF	R								
 b Write the relation between the number of instantaneous centres and the number L1 6M of links in a mechanism. UNIT-IV 7 A cam is to give the following motion to a knife-edged follower : L2 12M 1. Outstroke during 60° of cam rotation ; 2. Dwell for the next 30° of cam rotation ; 3. Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when (i) the axis of the follower is offset by 20 mm f om the axis of the cam shaft 	6	a Discuss the t	three typ	es of in	stanta	neous	centre	es for	a mec	hanisı	n	4		L6	6M	
UNIT-IV 7 A cam is to give the following motion to a knife-edged follower : L2 12M 1. Outstroke during 60° of cam rotation ; Dwell for the next 30° of cam rotation ; L2 12M 2. Dwell for the next 30° of cam rotation ; Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when (i) the axis of the follower is offset by 20 mm f om the axis of the cam shaft, and (ii) the axis of the follower is offset by 20 mm f om the axis of the cam shaft Example 100 mm f om the axis of the cam shaft		b Write the rel	lation be	tween t	he nu	mber	of inst	antan	eous c	entres	s and 1	the num	ber	L1	6M	
 7 A cam is to give the following motion to a knife-edged follower : L2 12M 1. Outstroke during 60° of cam rotation ; 2. Dwell for the next 30° of cam rotation ; 3. Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when (i) the axis of the follower is offset by 20 mm f om the axis of the cam shaft, and (ii) the axis of the follower is offset by 20 mm f om the axis of the cam shaft 		of miks m a	meenam	5111.			UNIT	-IV								
 Outstroke during 60° of cam rotation ; Dwell for the next 30° of cam rotation ; Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when (i) the axis of the follower is offset by 20 mm f om the axis of the cam shaft. 	7	A cam is to give	e the foll	lowing	motio	n to a	knife-	edged	follo	wer :				L2	12M	
 2. Dwell for the next 30° of cam rotation ; 3. Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when (i) the axis of the follower is offset by 20 mm f om the axis of the cam shaft. 		1. Outstroke du	ring 60°	of cam	rotati	on;										
3. Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when (i) the axis of the follower passes through the axis of the cam shaft, and (ii) the axis of the follower is offset by 20 mm f om the axis of the cam shaft		2. Dwell for the	e next 30	° of car	n rota	tion;										
of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when (i) the axis of the follower passes through the axis of the cam shaft, and (ii) the axis of the follower is offset by 20 mm f om the axis of the cam shaft		3. Return stroke	e during	next 60	° of c	am rot	ation,	and 4	. Dwe	ll for	the re	maining				
outstroke and return strokes. Draw the profile of the cam when (i) the axis of the follower passes through the axis of the cam shaft, and (ii) the axis of the follower is offset by 20 mm f om the axis of the cam shaft		210° of cam rot	tation. The second second	he strok	e of th	ne foll	ower 1	s 40 r	nm an	d the	mının	num rad	ius			
follower passes through the axis of the cam shaft, and (ii) the axis of the follower is offset by 20 mm f om the axis of the cam shaft		outstroke and re	J IIIII. I I eturn stro	le lollo	wer m raw th	oves v e prof	vitn u ile of	niiorn the ca	1 velo	city di	uring the av	both the				
is offset by 20 mm f om the axis of the cam shaft		follower passes	s through	the axi	s of th	e cam	shaft.	and (ii) the	axis	of the	followe	er			
		is offset by 20 r	mm f om	the axi	is of tl	ne can	ı shaft									

Q.P. Code: 19ME0304

8

OR

R19

L2 12M

roller follower the motion defined below : 1. Follower to move outwards through 50 mm during 120° of cam

A cam rotating clockwise at a uniform speed of 1000 r.p.m. is required to give a

rotation,

2. Follower to dwell for next 60° of cam rotation,

3. Follower to return to its starting position during next 90° of cam rotation,

4. Follower to dwell for the rest of the cam rotation.

The minimum radius of the cam is 50 mm and the diameter of roller is 10 mm. The line of stroke of the follower is off-set by 20 mm from the axis of the cam shaft. If the displacement of the follower takes place with uniform and equal acceleration

and retardation on both the outward and return strokes, draw profile of the cam and

find the maximum velocity and acceleration

during out stroke and return stroke.

UNIT-V

9	a What do you understand by the term 'interference' as applied to gears?	L1	6M					
	b Write advantages and disadvantages of gears	L1	6M					
	OR							
10	Explain briefly the differences between simple, compound, and epicyclic gear	L4	12M					
	trains. What are the special advantages of epicyclic gear trains?							

*** END ***